期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 面向多模态磁共振脑瘤图像的小样本分割方法
董阳, 潘海为, 崔倩娜, 边晓菲, 滕腾, 王邦菊
计算机应用    2021, 41 (4): 1049-1054.   DOI: 10.11772/j.issn.1001-9081.2020081388
摘要591)      PDF (1162KB)(992)    收藏
针对脑肿瘤磁共振成像(MRI)模态多、训练数据少、类别不平衡以及各个私有数据库差异大等导致分割困难的问题,引入小样本分割方法,并提出基于U-net的原型网络(PU-net)模型用以对脑肿瘤磁共振(MR)图像进行分割。首先对U-net的结构进行调整来提取各类瘤体的特征用以计算原型;然后在原型网络的基础上,逐像素利用原型对各空间位置进行分类,从而获取各类瘤体区域的概率图与分割结果;针对瘤体像素类别不平衡问题,采用自适应权重交叉熵损失函数来减小背景类对损失计算的影响;最后加入原型校验机制,即融合利用分割得到的概率图和查询图像对原型进行校验。所提方法在公开数据集BraTS2018上进行实验,得到的平均Dice系数为0.654,阳性预测率为0.662,灵敏度为0.687,豪斯多夫距离为3.858,平均交并比(mIOU)达到61.4%,与最新的小样本分割方法原型校准网络(PANet)和基于注意力的多上下文引导网络(A-MCG)相比各项指标均有所提升。结果显示引入小样本分割方法对脑肿瘤MR图像进行分割有不错的效果,采用自适应权重交叉熵损失函数也有着一定的帮助,可以对脑肿瘤诊断治疗起到有效的辅助作用。
参考文献 | 相关文章 | 多维度评价